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I. Introduction.

Widely used nonparametric measures of association such as Kendall's T

and Spearman's P lead to natural metrics on the set S of permutationsn

of n letters. Let o and o be elements of S . Four metrics whichn

we consider are

n
(1-i) D(Ir,o) = ()

i=l

n(1-2) s(n,a) = E i)
i=l

(1-3) T(Ti,o) = the minimum number of transpositions required

to bring (n(1),...,i(n)) into the order (u(1),...,o(n).

(1-4) I(,a) = the minimum number of pairwise adjacent transpositions

required to bring (i(l(1),... ,i (n) into the order1 l-i -I
(a' l),...,'r (n)). Here and ( are the permutations

inverse to n and Y.

In section 2 we derive the mean, variance and limiting normality of

D(,a) when Tr and a are chosen independently and uniformly from S

Similar, known, results for S, T and I are summarized in Table 1. In

section 3 we prove that I+T < D < 21. The proof and subsequent discussion

of boundary cases depends on combinatorial arguments of independent interest.

In section 4 we discuss the statistical implications of section 2 and 3 along

with some open problems.



2. Properties of the 4 Metrics.

If p denotes one of the functions D, S, T or I, then it is easy

to verify that p is a metric on S n; that is:

p(n,cr) > 0 and p(n,o) = 0 if and only if n = or

p(n,o) = p(-,n ) and p(n,a) < P(1,r) + p(jr)

Further, all four metrics are right invariant in the sense that

p(v,o) = p(,M,c) for q E: Sn. In particular p(l,n) =(li i),

where we write 1 for the identity permutation in Sn. We shall usually

abbreviate P(li) by o(n). We consider more specific properties below.

D(11,cr): The sum of the absolute values of the difference in the ranks is

the metric associated with Spearman's footrule. Kendall (1970) discusses

the footrule as a measure of association and dismisses it because of a lack

of available statistical properties. Toward this end we prove

Theorem 1. Let it and a be permutations chosen independently and

uniformly in Sn . Then, as n goes to infinity

2
(2-1) E(D(i,')) = 3 + 0(n)

(2-2) Var (D(n,o)) 2 3 + o(n 2 )

2

(2-3) <x -) O(x)I ->O

where O(z) e 1 2/2 dx

2
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Proof. Using right invariance, the distribution of D(r,c) is the same

as the distribution of D(lo) = D(n). Thus we may restrict our attention

to D(7t).

We first compute

n n 2

E(D(n)) 1. li-jil =B+O(n)
i nj=1

This proves (2-1). The proof of (2-2) is a lengthy computation and we

only sketch the details. Consider

n

(2-4) var(D(7r)) varli-i(i.)l + 2Z cov(li-(i),lj-n(j)I)
i=l i<j

E3 + o(D2 ) + 2Z cov(li-1i(i)I,jj-f(j)I)
20I i<J

To simplify the evaluation of the covariance sum note that for any bounded

functions f and g,

1 . f(t )g(k)

E(f(n(i))g(lT(j))) = n(n-l)

Sn E~f (o,(1) )}E~g ,(1))) E~f (1T ())g (,x (1))

n- "n-I

Ef O () )Eg('T () 1 ~ cov(f(n(l)),g(,(l)))

In particular,

1
(2-5) cov(Ii-n(i)I,Ij-n(J)t) = " cov(li-A(l)Ij

3



Consider

n
(2-6) cov(Ii-n(1)1,1 J-1(l) ) n i -i- In =

-n2 (i(i-i)+n(n-i-i))[j(J-)+(n-j)(n-j-i)I

in

= t(i,j) + f2 (i,j) .

Summing fl(i,J) in i < j for fixed j and then in J yields

(2-7) E f (iJ) + 0 (n 3 )
i<j110

Similarly

(2-8) f 2 (i,j) - + o(n )

i<j

(2-8) and (2-7) along with (2-6) and (2-5) show that

3 2
r cov(ii-,,(i)I,IJ.-,(j)I) - 3 + o(n .

i<J

Using this in (2-4) completes the proof of (2-2).

To prove (2-3) we use HosMings (1951) combinatorial central limit

theorem. This states that if (a n ) i,j=lp...,n is a sequence of square

n
array'i and if W F. a where r is a random pernatation in

fl il iWt(i)

S then, subject to growth conditions on n
n

..... -- .'W - .____________________



urn 1P(n w) <x).t0?(x

Using (2-2) we readily verify the sufficient conhition given in equation

(12) of Hoeffding (1951) for the array

n

a.. n li-jl i,J=l,...,nij

This completes the proof of theorem 1.

S(n,q): The sum of squares of the difference in the ranks is the metric

associated with Spearman's coefficient of association p. All of the

results listed in table 1 may be found in Kendall (1970).

T(iia): This seemingly natural metric has not received much attention in

the statistical literature. Note first that if * and q are in S

we have

T(,cr) = T(rMn,#) = T(1, ' l a) = T(itla-)

A result due to Caley (1849) states that T(I( a-) = n-C('l a) where

C(I) is the number of cycles in -. This gives an easy way to compute

T(n,a). Feller (1968), pg. 256, gives a representation of the number of

cycles in a random permutation as a sum of independent random variables.

This representation and standard theorems from probability theory easily

imply the limiting normality of T as well as the results listed in

table 1.

1(11,q): This metric arises from Kendall's measure of association T. It

is throra y discussed in Kendall (1970). A simple approach to the analysis
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of the stochastic properties of this metric is as follows: A permutation

ij is said to have an inversion at (kg) if k < A and 1(k) > r 1 (i).

A standard result (see for example Knuth (1973) Sec. 5.1.1) is that

I(,'n) = I(l, "I& ) = the number of inversions in Ao-I. Feller (1968),

pg. 256 gives a representation for the number of inversions in a random

permutation as a sum of independent random variables. From this the

lihiting normality as well as the results listed in Table 1 follow easily.

The following table summarizes the means and variances of these

metrics. Only the leading term of the mean and variance is indicated,

the notation [x] is used for the integral part of x.

Table 1

Max Mean Variance
2 2 23

D [1-1] n

n3n R3  n 5

T n-i n-log n log n

2 2 n3
n -n n 2n

3. Some Inequalities Involving D(Yr,).

There are imprtant relations between the various metrics *ich

enerally take the form of inequalities which must be satisfied. For

exmple, Kendall (1970) discusses the Durbin-Stuart inequality, hich
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in our notation is:

Sno)> Ixo)l+
-) n

We now prove:

Theorem 2.

(3-l' I(,r,or) + T(n,ar) < D(i,u) < 21(,T, )

Proof. Since all the quantities in (3-1) are right invariant it is

sufficient to show that

(3-2" I(n) + T(n) < D(n) < 21(n)

We prove the right hand inequality first.

I(n) = I(n l ) is the smallest number of pairwise adjacent transpositions

required to bring g to the identity. Let xi , 1 < i < I(n), be a

sequence of integers which index's a sequence of transpositions which trans-

form 1 to t1l to 02 to ... to A. The ith transposition transforms

Ii to ni+l by interchanging ni(xi) and n (xi+1). We may assume that

the sequence x i is chosen so that ri(xi) < ii(xi+l). Consider the

difference

Ai I  D(ni+ 1+1 D(ni)

= lxi' Ti (xi+ i) I xi +l-""xI i) 1 -711 (xi ) I-I h ' i (xi+l)l

There are three possibilities

Case. i 1(x +L) <x i . Then ni(x 1 ) < xi and Ai+l =0

-a . . ... . ... . .. ... ... .. . .. . .. . . . . . . .. .. ... k7



Case 2. ni(xi) > xi+1. Then lO.

Case . Ai(xi+1) > X 4 i(xi) < xi" Then Li+l 2.

Thus D(1) = Z A< 21(n) as desired.
i ~l

To prove the left hand side of the inequality (3-2) we need some

more notation.

Denote the inversion A(k) > ;t(l) with k < I by [k;1]. Let us

call [k;1] a Type I inversion if n(k) > A and a Type II inversion if

n(k) < A. Thus, every inversion of r is either a Type I or Typp II

inversion and some inversions may be of both types.

For a fixed k, if [k;yl is a Type I inversion then we must have

k <y< ().

Therefore, denoting the number of elements in a finite set A by I AI,

(3-3) IfY: [k;y] is a Type I inversionll < H (k)-k .

Similarly, if [x;1] is a Type II inversion then

V U) < IT(x) < I

and so,

(3-4) l(x: [x;A] is a Type II inversion )I <-() •

Thus, it follows that

8



h

D(IT) Xk-A(k)k

Z (n(k)-k) + Z (i-; (9
,'(k) )k < z(3-5)

> # of Type I inversions + # of Type II inversions

>

(J-5) is clearly a step in the right direction toward proving (3-2).

In order to actually prove (3-2) we have to examine (5-5) more carefully.

In particular we must see how much was given away at each of the two

inequalities in (3-5).

In the first place, suppose for some integer y,

(3-6) k < y < (k) < it(y) .

Such a y is counted by the sum E ( (k)-k) but is not counted in
ic(k) >k

the sum of the numbers of Type I and Type II inversions since [k;y] is

not an inversion.

Similarly, if x satisfies

(3-7) i (x) < n(j) < x <

then x is counted by the sum 2(j.n()) but [x;i] is not an
ff (f ) < I

inversion. Thus, for each such x and y we get a contribution of 1

to D (n ) - I (i).

The other place in (3-5) where we have a potential gain of D(n)

over I(,) is the last inequality. Here, we gain 1 for each inversion

9
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of T which is both Type I and Type II, i.e., for each x having

(3-8) x < I(x) , 2(x) < n(x .

Let us split (3-6) and (3-7) into two pieces each:

(3-6') k < T(k) < iT2 (k) (with yz(k))

(3-6) k < y < c(k) < T (y)

(3-7' IT 2() < n(2) < j (with x:g(i))

"(3-7 "1 t(x ) < - (I ) < x < .

Let us now restrict our attention to a cycle C = (cl, 2 ,... ,cm)

of '' of length ICI = m. Thus, T(ck) = ck+1  for I < k < m, and

t(cm) = CI. We call an element or pair of elements of C satisfying

(3-6'), (3-6"), (3-7'), (3-j") or (3-8) a critical configuration of C.

We now show that C has at least m-l critical configurations. We

proceed to induction on m. For m=l there is nothing to prove. For

m=2 it is immediate since in this case (3-8) clearly holds for the smaller

element of C. Assume for some m > 2 that the claim is valid for all

values < m and suppose C is an m-cycle which has at most m-2 critical

configurations. There are several cases:

Case 1. Suppose x E C satisfies (3-6'), i.e., x < lr(x) < 2 (x). Form

the (m-l)-cycle C' by removing x from C. It is not hard to check

that we have reduced the total number of critical configurations by at least

1 so that C' has at most m-3 critical configurations, which is a

contradiction to the induction hypothesis.
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Case 2. Similarly, if x c C satisfies (3-7') then by deleting it from C,

we form an (m-l)-cycle C' having at most m-3 critical configurations,

which is impossible.

Case 5. Suppose there exists x E C satisfying

x < T2(X) < (x) < l1'(x)

Thus, C has a critical configuration satisfying (3-6") with k~x and

2 2
y='T (x). Form the (m-2'-cycle C' by deleting 7T(x) and 3 (x) from

C. It is now not difficult to see that the total number of critical

configurations remaining is at most m-4 (note that x also satisfies

(3-8)), which contradicts the induction hypothesis.

Case 4. A similar argument applies if some y E C satisfies

y > 2(Y) > (Y) > (Y)

Therefore, we may assume that cases 1 through 4 do not occur in

C. However, if c denotes the least element of C then this assumption

k+2 ku1 ,
forces vk (c) always to be strictly between At(c) and 3k 1.c) for

any k > 0. This is clearly impossible (since C is a cycle) and completes

the induction.

Thus, each m-cycle of n contributes at least m-1 to the difference

D(n) - I(n). Therefore

D(n) - I(n) > E (IcI-,) E z ICI-C(x) =,-C(i)
C=cycle C

of

This proves Theorem 2.

11



As a numerical example, Table 2 lists the values of the 4 metrics

vhen n=4 .

Table 2.

it cycles T(i) I(IT) D(n) S(n)

(1234) (1) (2)(3)(4) 0 0 0 0

(1243) (1)(2)(34) 1 1 2 2

(1524) (1)(23)(4) 1 1 2 2

(1542) (1)(234) 2 2 4 6

(1423) (l)(243) 2 2 4 6

(1432) (1)(24)(3) 1 3 4 8

(2134) (12)(3)(4) 1 1 2 2

(2143) (12)(34) 2 2 4 4

(2314) (123)(4) 2 2 4 6

(2341) (1234) 3 3 6 12

(2413) (1243) 3 3 6 10

(2431) (124)(3) 2 4 6 14

(3124) (132)(4) 2 2 4 6

(3142) (1342) 3 3 6 10

(3214) (13)(2)(4) 1 3 4 8

(3241) (134) (2) 2 4 6 14

(3412) (13)(24) 2 4 8 16

(3421) (1324) 3 5 8 18

(4123) (1432) 3 3 6 12

(4132) (142)(3) 2 4 6 14

(4213) (143)(2) 2 4 6 14

(4231) (14)(2)(3) 1 5 6 18

(4312) (1423) 3 5 8 18

(4321) (14)(23) 2 6 8 20

12



Remarks. 1. An immediate deduction from Theorem is the boinmd C(-) * I(n) > n.

2. We can easily characterize the permutations " 3 where D(,! takes on
n

its maximum value. Fcr n even, D(' ) -n with equality if and only If
n nn

r(i > for n Thus D(' takes ,n its maximum value for

((K,)2 choices of . A similar bound holds for odd n. This skewnessC-'

partially explains why the mean of D(q') is larger than n

3. It is natural to consider when equality is attained in theorem 2. The

example in table 2 shows equality of the lower bound in 25 out of 24

cases. For larger n consideration of the mean values shows that

equality can occur for at most o(n!) elements of S . We cann

characterize the elements c Sn  for which equality occurs in the

upper bound. Let us say that T, has a 3-inversion if there exist

i < j < k with "(i > ii(j) > x(k). It can be shown that D(n) = 21(ir)

if and only if it has no 3-inversions. Knuth (1973), Sec. 5.1.4, notes

that the number of permutations in Sn with no -inversions is exactly

the well known Catalan number 1 (2n-fl
2nf1 n

4. The number of permutations Tr satisfying I( i) = T(n) is easily seen

to be the Fibonacci number F 2n- defined by F0 = 0, F1 = 1 and

Fn+2 - F n+1  F n  for n > 0. This shows that simultaneous equality

of both bounds in Theorem 2 holds exponentially often.
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4. Interpretation of Results and Some Open Problems.

Statisticians most often normalize metrics so that they have the proper-

ties of a correlation coefficient. The translation is straightforward, if

P is a metric on S and its maximum value is m, define a measure of

association by: R(r,o) = 1 - m .. We note in this connection them

confusion on pgs. 52-3j in Kendall (1970) concerning Spearman's footrule.
2

It is clear that the proper choice of m for the footrule is [a--]. Knuth

(1973) works with I and T directly as measures of disarray.

An example from Kendall (1970), will help clarify a discussion of

invariance. Consider a class of lo students ranked in mathematics and

in music.

Pupil a b c d e f g h i j

Mathematics (x) 7 4 3 10 6 2 9 8 1 5

Music (a) 5 7 5 10 1 9 6 2 8 4

A typical use of the metrics we suggest would be to compute the distance

between the permutations Tt and o as a measure of association. Right

invariance here refers to invariance under changes in the labels a

through J, of the students. Right invariance is compelling in so mrzy

situations that we have forced all of the metrics to be right invariant.

This accounts for the at first unnatural appearance of the definition of

I(w,u). Left invariance corresponds to relabeling the ranks; as an

example, it could be that 10 means the worst ranking and 1 the best,

instead of the opposite relation. Among the metrics we consider, T in

left invariant as well as right invariant.

14



The results in T:abh, I suggect that T is unzuitable fuJr general use,

having very small variance about a mean very close to ito maximum value.

Of the three remaining metrics S has the largest range with corresponding

greater variability. S has the natural interpretation of the euclidian

distance between the vectors it and o regarded as points on the surface

of a sphere in n dimensional space. I and D seem roughly similar,

D seems somewhat easier to interpret directly while I has the advantage

of having its distribution tabu1.L.ed for small sample sizes (cf. Kendall

[197U] ). The inequalities in Section 3 also suggest that the difference

between I and D is not very great.

The quantities I and T arise in the analysis of sorting algorithms.

In particular Knuth (1975, pg. 141) considers the quantity B(iR) = the

number of right to left maxima in A. Knuth (1973, pg. 157) shows that,
2in our notation 2B( ) < ifn) + T(Ir) < [p-].

Use of theorem 2 actually gives the stronger inequality 2B(1) < D(n).

The quantity D(A) also appears in Problem 5.2.1-7 of Knuth (1973) in

connection with another sorting algorithm.

We conclude by listing some open problems.

1. Find inequalities relating D(1,n) to S(1,7i). There is the obvious

bound D(1,n) < S(l,n). Note that even this weak bound holds exponentially

often. Indeed, it is not hard to see that D() - S() for exactly Fn+l

permutations E Sn (cf. Remark 4).

2. Find reasonable 2-sided invariant metrics.

3. Characterize the permutations in S nwhere equality of the lower boundn

of Theorem 2 holds.

15
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